Talbot Displacement Lithography:

Definition of Sub-100 nm Structures by

UV-exposure

Mariusz Graczyk
Lund Nano Lab, NanoLund/Solid State Physics
Lund University, Sweden
e-mail: mariusz.graczyk@ftf.Ith.se

Copenhagen 2019-05-08

Outline of the lecture

1. Aim of lithography development
2. Overview and comparison of lithographic techniques used in Lund Nano Lab for tamplate preparation for nanowires growth
3. Basics of Talbot Displacement Lithography (TDL)
4. Technical implementation of TDL
5. Typical process flow
6. Examples of TDL processes and applications at Lund Nano Lab
7. Conclusions
8. Acknowledgements

Main aim of lithography development in LNL

GaAs nanowires growth in windows opened in SiNx mask on 2" GaAs wafer using TDL Courtesy; Victor J.Gómez, Solid State Physics LU

In lithography, templates for nanowires growth in form of array of Au dots or holes in hard mask must be prepared.

1. Nanowires size $30-200 \mathrm{~nm}$
2. Pitch $500-2000 \mathrm{~nm}$
3. Regular pattern (array)
4. Low defects and contamination level
5. Minimum area - 2 " wafers
6. Throughput (100 wafer/year)

Common lithographic approaches: electron beam lithography (single beam)

Advantages:

1. High resolution ($\approx 10 \mathrm{~nm}$)
2. Flexible, suitable for research labs
3. No masks required

Drawbacks:

1. Very slow (sequential exposure)
2. Proximity effect
3. Requires stiching for large areas
4. Expensive

Common lithographic approaches: focused ion beam lithography (FIB)

Advantages:

1. High resolution ($\approx 20 \mathrm{~nm}$)
2. Flexible, suitable for research labs
3. Can be used for direct patterning (sputter)
4. No masks required

Drawbacks:

1. Very slow (sequential exposure)
2. Possible damage, re-deposition
3. Requires stiching for large areas
4. Expensive

Common lithographic approaches: nanoimprint lithography

IPS copy of Ni or Si master stamp

Advantages:

1. High resolution ($\approx \mathrm{few} \mathrm{nm}$)
2. High throughput
3. Relatively inexpensive

Drawbacks:

1. Mass transfer, sensitive for defects
2. Master stamp is expensive
3. Residual layer to be controled
4. Not very flexible
5. Accumulated defects

Talbot Displacement Lithography in Lund Nano Lab PhableR 100DUV from Eulitha AG

舟 4

Talbot Displacement Lithography: principles of operation

H. Solak, C. Dais, F. Clube, Optics Express, Vol.19, No. 11 (2011)

Highly collimated (0.028°) light source 193 nm wavelength excimer pulse laser

Phase shift mask

Only regular pattern is useful

3D Talbot interference pattern
Pattern repeats with characteristic Talbot period

Wafer coated with BARC and DUV resist is placed in a distance D (gap) from the mask Exposure of resist occurs during movement toward the mask by minimum Talbot period No contact with mask, insensitive to surface imperfection, whole 4" wafer exposure

Phase shift mask necessary for high resolution 180° phase shift for specific wavelength

Phase-Shift Mask Types: (1) Binary mask, (2) Phase Shift mask, (3) Etched Quartz mask (Levenson mask), (4) Half-tone mask.
(Top) Mask, (Red) Light Energy/Phase on Mask, (Blue) Light Energy/Phase on Wafer, (Green) Light Power on Wafer, (Bottom) Resist on Silicon Wafer

Bottom antireflective coating BARC reduces interference between incoming and reflected beam

Reflectivity Curves of ARC ${ }^{\circledR}$ 162B Coatings on Various Substrates

Optimum thickness for first minimum is 82 nm for ARC 162B at 193nm wavelength. Both thickness and extinction coefficient for specific wavelength must be optimized for BARC.

Talbot effects for regular pattern: pitch (p) reduction for gratings and square arrays

Talbot Displacement Lithography: Piezo stage limit

Optical sensor integrated with hardware allows to measure gap (D) and amplitude of movement up and down. Maximum displacement in piezo stage is limited to $110 \mu \mathrm{~m}$ which limits pitch to 1500 nm .

Practically wafer is transferred on the distance 3 times longer than Talbot period. Movement up and down is repeated until programmed dose is accumulated. During exposure laser generates pulses with programmed intensity from 0.5 to 3 mJ and frequency from 30 to 150 Hz .

Dose test for grating - mask LIL102P400L Linear grating with pitch 400 nm on mask.

Probably to low dose
The pitch is reduced 2 times. Lines width is reduced from 136 to 45 nm with increase of dose.

Double exposure with grating mask LIL102P400L

Wafer was exposed 2 times with dose $3 \mathrm{~mJ} / \mathrm{cm}^{2}$ and rotated 90° between exposures. Pitch is reduced 2 times. Dots size 75-80 nm. Dots are arranged in a square array.

Dose test for hexagonal pattern mask LIL120P600H (pitch 600nm)

Quality of big area exposure comparing Talbot displacement and contact lithography.

MJB4DUV

Good

 $600 \mathrm{~nm}, 45 \times 45 \mathrm{~mm}$ on 4 " wafer, gap $80 \mu \mathrm{~m}$

Hexagonal array of 700 nm holes, pitch 1500 nm , 2" wafers, vacuum contact

Steps for pattern transfer into BARC and thin SiO_{2} or SiNx for nanowires growth application

After PAR resist exposure in TDL and pattern development

BARC is not sensitive to deep UV light and is insoluble in the developer.

After BARC 4,5 min etch in O_{2} plasma in Nanoetcher from Moorfield Nanotechnology Ltd

After $\mathrm{SiO}_{2} 5$ min etching in CHF_{3} plasma in RIE Sirius T2 from Trion Technology

Triple resist LOR/BARC/PAR system for lift-off purpose and nanowires growth application

After PAR resist exposure in TDL and pattern development

Process flow to create undercut suitable for lift-off

After BARC After 40sec 5,5 min etch in O_{2} plasma in Nanoetcher

LOR dissolving in MF319 3:1 $\mathrm{H}_{2} \mathrm{O}$

20 nm metal After sputtering Pt80\%Pd20\%

NanoLund
(2) myfab

Triple resist LOR/BARC/PAR system for lift-off purpose and nanowires growth application

After lift-off in remover 1165
$\mathrm{Pt} / \mathrm{Pd}$ dots diameter slightly over 200nm

Successful BARC replacement with PMGI resist for improved and simplified lift-off system

DUV resist

 BARC
SiO2

Si

Cross section after development of PAR1077(DUV resist) / BARC.
Dry etching in O_{2} plasma necessary to get access to substrate surface.

PMGI is soluble in 0.24 N developer and after development resists profile is suitable for lift-off purpose.

No ashing necessary.

Optimisation of exposure in Talbot Displacement Lithography allows to reduce dots diameter by 25\%

Hexagonal array of Au dots on 4" fused silica wafer. Mask LIL171P500H

Diameter of Au dots on fused silica is around $140-150 \mathrm{~nm}$, pitch 500 nm .

PMGI residues not removed yet.

Use of proposed TDL technology for nanowire growth and SiO_{2} etching for NIL stamp fabrication

GaN nanowires on sapphire substrate grown on template prepared in Talbot Displacement Lithography. Mask LIL120P600H
Courtesy; Kristian Storm, Hexagem AB

"Deep" etching of SiO_{2} in CHF_{3} plasma for NIL master stamp fabrication with controlled depth and profile.

Conclusions

1. Talbot Displacement Lithography is a novel technology suitable for large area exposures with sub-100 nm resolution.
2. This is non contact lithography system, saving expensive mask
3. This technology is insensitive to surface curvature.
4. Allows to reduce size of pattern in comparison with nominal size on the mask by proper choice of exposure parameters (lower pulse energy, higher pulse repetition frequency) to get better dose integration in space and time.
5. In comparison with Nano Imprint Lithography amount of defects is lower, technology more stabile and ashing in $\underline{\mathrm{O}}_{2}$ plasma can be eliminated.

Thank you!

Acknowledgements:
Financial support from NanoLund and Myfab is acknowledged.

