

Fourier Transform-Infrared (FT-IR) and Raman Spectroscopies

Principles and Applications

<u>Prepared by</u> Philip M. Weiser (p.m.weiser@smn.uio.no) Centre for Materials Science and Nanotechnology, UiO 07.mai.2019

DTU Danchip National Center for Micro- and Nanofabrication

This tutorial will address two types of optical spectroscopy.

Part 1: Fourier Transform-Infrared (FT-IR) spectroscopy

Part 2: Raman spectroscopy

- The principles behind FT-IR and Raman spectroscopy.
- How modern instruments implement these techniques.
- Complementary aspects of IR and Raman spectroscopy.

Infrared spectroscopy

Vibrational and electronic absorption occur in the IR and visible spectral regions.

Atomic dipole oscillator (harmonic approximation) is used to model vibrational transitions.

At 295 K and below, most molecules are in the n = 0 ground state.

IR-active vibrations require a **non-zero** change in the net electric dipole moment.

CO₂ antisymmetric stretch

CO₂ symmetric stretch

Follow normal coordinate Q (e.g., position of one O atom) during the vibration.

Fourier Transform technique uses a Michelson inteferometer to modulate the amplitude of the incident light on the detector.

- Translation of M2 yields alternating constructive and destructive interference.
- Interferogram: detector signal vs. △OPL

Wavenumber (cm⁻¹)

Fourier transform recovers frequencies and amplitudes of contributions.

The Fourier Transform allows the spectrum of a broad light source to be measured **without** dispersing the light.

FT-IR spectroscopy requires **two** measurements: background + sample.

Figure credit: Thermo Nicolet TN-00128 «FT-IR vs. Dispersive Infrared» Background: spectrometer components + ambient Sample: spectrometer components + ambient + **sample** Ratio of sample to background yields desired spectrum.

Different sampling geometries used for a wide class of materials.

- Simple: light in, light out.
- Samples: bulk single crystals, liquids and gases.
- Sample preparation + mounting can be time-consuming.

Different sampling geometries used for a wide class of materials.

- Complex: total internal reflection + evanscent wave
- Samples: anything except gas phase (thin films and powders)
- Almost no sample preparation -> most popular form of FT-IR

ATR Crystals: diamond, ZnSe, Ge, Si

- Need good contact between the sample and the crystal
- Tradeoff between spectral range, penetration depth, and \$\$\$

FT-IR technique offers significant advantages over older, dispersive techniques.

• **Multiplex advantage -** single scan measures entire spectral range.

- Throughput advantage higher optical throughput (circular aperture) increases the signal-to-noise ratio. $S/N \sim \sqrt{n}$
- **Precision Advantage** He-Ne laser interferogram used to digitize spectrum, acts as a secondary standard.

FT-IR Limitations

- **Single channel technique -** sample and reference are not measured at the same time.
- Beer's Law (signal \propto species concentration) limit of detection of 10¹⁴ atoms/cm³ (1 cm thick) or 10¹⁸ cm⁻³ (1 µm thick).
- **Quantitative Analysis** require calibration factor from another technique (e.g., secondary ion mass spectrometry).
- **Competing Absorption Mechanisms** signal of interest may overlap or be completely masked by other absorption mechanisms.

Raman spectroscopy

Atomic dipole scatterors (harmonic approximation) are used to model scattering of light.

Incident light (non-resonant) induces oscillating dipole moment.

$$\mu = \alpha E = \alpha E_0 \cos\left(2\pi \nu_{\text{light}} t\right)$$

 α = polarizability (ease to distort electron cloud)

For small amplitude vibrations (harmonic approximation),

$$\alpha \cong \alpha_0 + \frac{\partial \alpha}{\partial Q}Q = \alpha_0 + \frac{\partial \alpha}{\partial Q}Q_0 \cos(2\pi\nu t)$$

Atomic dipole scatterors (harmonic approximation) are used to model scattering of light.

 $\overline{Q} = \overline{Q}_0 \cos(2\pi\nu t)$

Expression for the oscillating dipole moment becomes,

$$\mu = \alpha E = \alpha_0 E_0 \cos \left(2\pi \nu_{\text{light}} t \right) + \frac{\partial \alpha}{\partial Q} E_0 Q_0 \cos(2\pi \nu t) \cos \left(2\pi \nu_{\text{light}} t \right)$$
Rayleigh
Rewrite
$$\cos(2\pi \nu t) \cos \left(2\pi \nu_{\text{light}} t \right) = \cos \left(2\pi \left[\nu_{\text{light}} - \nu \right] t \right) + \cos \left(2\pi \left[\nu_{\text{light}} + \nu \right] t \right)$$
Raman Stokes
Raman effect: inelastic scattering of light yields info about vibrations.

Raman-active vibrations require a **non zero** change in the polarizability of a molecule.

CO₂ antisymmetric stretch

CO₂ symmetric stretch

Follow normal coordinate Q (e.g., position of one O atom) during the vibration.

Quantum mechanical comparison of IR and Raman events.

Including anharmonicity effects leads to weakly allowed transitions of...

- Overtones
- Combination bands

Collected Raman spectrum is transformed to yield Raman shift on *x*-axis.

Raman shift shows the increase/decrease in energy with respect to the material.

- Wavenumber position => chemical identification
- Height of the peak => concentration of species
- Width of the peak => crystallinity of material

Raman spectrometers can be used for both macro- and microscopic measurements.

Macro-Raman

Figure credit: Dr. José A. Flores-Livas (http://www.fysik-aztek.net/)

Micro-Raman

Figure credit: M. Schumm, PhD Dissertation, Julius-Maximilians-University Wurzburg (2008)

- Laser: power (intensity) and wavelength (fluorescence, penetration depth)
- Macro: Monochromator/slits determine spectral resolution
- Micro: objective lens determines spatial resolution
- Notch filters needed to suppress Rayleigh scattered laser line

FT-IR Application: Identifying defects in semiconductors

• Identifying O and C impurities in Cz Si

Source: Bruker, Application Note # 54, Carbon and Oxygen Quantification in Silicon.

Interstitial Oxygen – gettering sites for metallic impurities, also affect electrical conductivity.

Substitutional Carbon – affect density and electrical activity of dislocations

FT-IR Application: Identifying defects in semiconductors

• Identifying H impurities in transparent semiconducting oxides (TSOs)

Indium oxide (In_2O_3) – dominant TSO on the market for transparent contacts on flat screen displays.

Presence of interstitial hydrogen confirmed via isotopic substitution with deuterium.

Hydrogen gives rise to unintentional *n*-type conductivity observed in as-grown samples.

Source: W. Yin et al. Physical Review B 91, 075208 (2015).

Raman Application: Optical phonon modes in zinc oxide

Figure 3.5: Allowed optical phonon modes in the Raman spectra of wurtzite ZnO for different experimental configurations [Cusco 2007].

Polarized Raman spectroscopy used to compare experimentallydetected phonon modes with those predicted by theory.

Raman Application: Number of layers present in graphene

г

Source: L. M. Mallard et al. Physics Reports 473 (2009) 51-87.

Raman Application: Number of layers present in graphene

Source: L. M. Mallard et al. Physics Reports 473 (2009) 51-87.

1-LG: single Lorentzian

2-LG: four Lorentzians

3-LG: six Lorentzians

4-LG: three Lorentzians (things get complicated...)

Summary of this tutorial

- IR and Raman spectroscopies are **non-destructive** techniques and provide information about **vibrational** and **electronic** transitions in a material. (rovibronic also possible)
- Fundamental rules that determine vibrationally-active modes:
 - IR: non-zero change in the electric dipole moment
 - Raman: non-zero change in the electric polarizability
- **Complementarity** of IR and Raman permits the characterization of a broad range of materials.

Several FT-IR and Raman setups available within NNN.

FT-IR

Facility	Instrument	Responsible	Contact
MiNaLAB (UiO)	Bruker IFS 125HR	Philip M. Weiser	p.m.weiser@smn.uio.no
Electrum	Nicolet iS10	Abdusalam Uheida	salam@kth.se
Electrum	Bruker Vertex 70V	Ingemar Petermann	ingemar.petermann@ri.se

Raman

Facility	Instrument	Responsible	Contact
NTNU NanoLab	Renishaw InVia Reflex	Trine Østlyng Hjertås	trine.o.hjertas@ntnu.no
Hive	Horiba XploRA	Mattias Fredriksson	mattias.fredriksson@chalmers.se
Micronova	WITec alpha300 RA+	Joonas Holmi	joonas.holmi@aalto.fi

Please check descriptions in LIMS or email above contact person for more information.

Attenuated Total Reflectance (ATR) Challenges

1. Distortion of relative peak intensities (differing penetration depths) $d_p = d_p \left(\bar{v}, n_{\text{sample}}, n_{\text{ATR}}, \theta_{\text{incidence}} \right)$

2. Shift of absorption bands to lower frequency

Absolute position of $\bar{\nu}$ depends on $n_{sample}d_p\alpha$

Anomalous disperion associated with n_{sample} near an absorption resonance causes shift to lower wavenumber.

Most manufacturers provide software to correct these effects.

	Definition	G	Spherical mirror
A	Scanner with movable retroflecting mirror	Н	Collimating parabolic mirror
В	Beam splitter	1	Focusing parabolic mirror
С	Fixed retroflecting mirror	J	Toroidal mirror
D	Folding mirror	K	Collimating parabolic mirror
E	Input aperture (field stop)	L	Focusing parabolic mirror
F	Sources		

Infrared light sources

Beamsplitters

Detectors

Advanced pump-probe techniques can provide additional information or enhanced signals.

