Diffraction techniques in the Scanning Electron Microscope (SEM)

Alice Bastos da Silva Fanta DTU-Nanolab

Scanning electron microscopy (SEM)

2

Scattering and diffraction

Electron Diffraction Techniques in the SEM

1. ECCI – Electron channelling contrast images Dislocations in nitride thin films

Observation of crystal defects (dislocation, stacking faults and grain boundaries)

2. EBSD - Electron Backscatter Diffraction

Microstructural – crystallographic characterization technique for <u>bulk</u> <u>samples</u>

C. Trager-Cowan: http://ssd.phys.strath.ac.uk/index.php/Elec tron_channeling_contrast_imaging

Fe3% Si

3. TKD - Transmission Kikuchi Diffraction

Microstructural – crystallographic characterization technique for <u>thin</u> <u>samples</u>

EBSD Electron Backscatter Diffraction

5

Electron backscatter diffraction - history

- 1928 First observation of BKP by Nishikawa& Kikuchi
- 1973 Observation of BKP in a SEM by Venables and Harland
- 1984 <u>Dingley</u> started using TV camera and computer software for orientation determination
- 1992- Introduction of the Hough transform by Krieger Lassen et al.
- 1993 Introduction of OIM (Orientation image microscopy) by Adams et al.

Formation of Kikuchi pattern – step 1

The formation of EBSD patterns is a <u>two-step process</u>

POINT SOURCE

• Electrons strike the specimen

1. They are then inelastic scattered from the point source in all directions

<u>Inelastic:</u> some loss of energy

Formation of Kikuchi pattern – step 2

2. *crystalline materials: those* electrons (from inside the point source) are diffracted by the crystal lattice planes when <u>the Bragg condition is satisfied</u>

Bragg equation: $n\lambda = 2d \sin \theta$

λ: wavelength of the electrons
d : spacing of the crystal planes
n: is an interger
θ : angle of incidence

2 lattice plane

Simplified illustration – one electron and one lattice plane

 Since the <u>scattered electrons</u> are travelling in <u>all</u> <u>direction</u>, the diffracted beam will lie on one of <u>two cones</u>.

Thin sample

Oxford instrument

Detector screen

Adapted from: Ref.:http://ssd.phys.strath.ac.uk/index.php/Electron_backscatter_diffraction_(EBSD)

Two electron and two lattice plane

Adapted from: Ref.:http://ssd.phys.strath.ac.uk/index.php/Electron_backscatter_diffraction_(EBSD)

10

Simplified illustration – one electron and one lattice plane

Ref.:http://ssd.phys.strath.ac.uk/index.php/Electron_backscatter_diffraction_(EBSD)

EBSD – tilted sample

Bulk sample

EBSD detector

Tilt the sample to approximately 70° (best compromise between intensity and resolution)

EBSD – tilted sample

Scattering from single lattice planes

EBSD patterns

Position of bands <u>directly linked</u> to the crystallographic orientation

Diffraction from a specific lattice plane

Intersections of bands = intersections of planes = zone axes

Ti-Al 20kV *Ref.: Dr. Emmanuelle Boehm Courjault;* Introduction to EBSD (Electron BackScatter Diffraction) :Principle and Applications

Angles between bands = angles between planes

EBSD patterns are:

- <u>unique</u> for a specific crystal orientation
- is controlled by the crystal structure: space group symmetry, lattice parameters, *precise* composition

Surface sensitive technique

- Although EBSPs are created by <u>backscattered</u> <u>electrons</u>, the signal does not come from the whole BSE interaction volume
- Instead, the diffraction signal originates from a "POINT SOURCE" \rightarrow 5-10nm under the surface

Surface sensitive technique

- The top layer
 - Free from damage
 - Free from contamination
 - or oxidation layers
 - in case of non conductive samples
 → the <u>coat</u> must be kept very thin –
 typically in the range of <u>2-5 nm</u>.
- Due to high tilt angles (typically 70°),
 - <u>surface topography</u> must be kept to an absolute <u>minimum</u>.

Sample strongly tilted – Resolution y axis is 3x worst

Signal intensity

From: S. Baeck, TSL tutorial S. Wright Raw pattern Only a small fraction of the electron arriving at the phosphor screen are diffracted

Background intensity supresses both the contrast and sharpness.

Background

Nb-pattern from S. Zaefferer

Signal is material dependent

Increasing atomic number (↑ Z):

- Increase the amount of backscatter electrons <u>Pattern quality</u>
- Decreases the interaction volume improve spatial resolution

Short take home message

- It is not easy to prepare the sample for EBSD
- Once you get patterns, it runs fully automated

Automate data acquisition, pattern indexing and orientation determination

In one automate run you get:

- Grain size,
- texture,
- grain boundary distribution,
- phase distribution,
- ...

Choose the step size and the area

Runs very fast: Now a days up to **3000** patterns per seconds

Automated indexing during the acquisition

Orientation map

Grains size distribution

Grain boundary map

Misorientation angles

#Phase8	h:											
# Nase	: Auster	nite, fo	c (New)									
# Spac	egroup:	F mmovl	le:									
a ALB	.66											
4 8: 3	.66											
	. 66											
# 41ab	AL OFT											
# Beta	- OF1											
+ Game	- 6F1											
#Cirlant	ationer											
ateday.	Ohnen a	4/94		with the second	and some h	able 1	1147	abi'r	Rande	ar.	tion in	Tinda.
AUNDEA	Phase	Alent	YUTA	A(pas)	Milter	pnas	ena .	hinry	earius		Gran	Autor
	0		0	0 747		0	0	0				
*	0		0	-2.717		0	0			0	0	
2	9	÷	0	-5.434	-1			0			0	
3	9	2	9	-8.151	-1	0	9	8		0	0	
4	8	4	9	*1.066	5 0	0	0	0		0	-1	
5	6	5	0	-1.358	9.0	8	8	0	0	0	-1	
0	8			-1.638	0.5	-		63	0	8	-1	
7	0	7	0	1.901	0	0	0	0		0	-2	
8	9	8	0	-2,173	5 0	8	9	6	0	0	-1	
9	0	9	0	-2.445	3 0	9	9	9	0	9	-1	
10	0	10	0	+2.717	0	8	0	9	0	0	-1	
11	0	11	ø	-2.988	70	0	9	0	0	0	-1	
12	0	12	0	-3.260	9.1	8	0	0		0	-1	
13	0	13	0	-3.532	10	0	0	.8	0	0	-1	
14	0	14		-3.803	5.0	8		-	8	0	-1	
15	0	15	0	-4.875	58	a	9	8	.0	0	-1	
16	0	16	0	-4.347	2 0	0	0	0	0	0	-1	
17	0	17	0	-4.618	9.0	8	0	8	9	8	-1	
18	0	18	ē	-4.890	5 0	0	0	0	0	0	-1	
19	0	19	9	-5.162	9.6	9	9	0	0	0	-1	
29	0	20	0	-5.434	0	0	0	8	8	8	-1	
21	0	21	8	+5.785	0 1					0	-1	
22	8	22	0	-5.977	4 8	0	0	8	8	6	-1	
23	0	23	8	-6.249	0	0	0	0	0	8	-1	
24	0	24	0	-6.528	5 0	0	9	9	0	0	-1	
25	0	25	e	-6.792	5 0	0	0	0	0	0	-1	
26	0	26	0	-7.864	2.0	0	0	0	0	0	-1	
27	0	27	0	-7.335	9.9	0	0	0		8	-1	
28	0	28	8	+7.687	6.0		0	8		0	-1	
29	0	29		-7.879	3 0	0	0	0	0		-1	
30	0	30	0	-8.151	0	0	0	0	0	8	-1	
31	0	31	8	-8.422	7.0	8	9	8	0	8	-1	
32	0	32	0	-8.694		0	0	0		0	-1	
13	0	33	0	-8.955	1.0		0	8	0	0	-1	
14	0	3.4		.9. 237	0 1	0	0	0			-1	
35		35		-9.500	5.0	8		8			+1	
16		26		-9.781	2.0						-1	
37	0	37		-1.005	HOF1		a	0		ä	0	
1.0	0	20		1 012	LEE1	ä	ä					- 3
10	à	20	0	1.052	1361	0	0	0	0	0	0	1
40	0	40	0	-1.059	1344	0	0	0	0	0	0	
40	0	40	0	*1.066	951 9767	0	0	0	0	0	0	1.5
10	9	41		-1.115					0	0		1.2
42		92		-1.141	1411		17					
45		4.5		-1.108	1111						4	
44	0	44	0	-1.195	HOE1	9	0	0			6	
42	9	45	0	-1.222	1360		0	0	0	9	9	

Colourful image

1111

Orientation with respect to the sample coordinate system

Z-direction

Y-direction

Χ

Adapted from: Channel 5 User Manual, HKL Technology A/S, Hobro, Denmark (2001).

EBSD is a materials characterization tool

Application example -1

DTU Nanolab

Niobium deformed by ECAP and heat treated for 15 min

Local misorientation map

Orientation bands – related to the type of deformation - **shear**

Deformed areas

Recrystallized areas

		Total	Partition
Min	Max	Fraction	Fraction
0	3	0.999	0.999

H. Sandim; www.imim.pl

15 um