Diffraction techniques in the Scanning Electron Microscope (SEM)

Alice Bastos da Silva Fanta DTU-Nanolab

Scanning electron microscopy (SEM)

2

Scattering and diffraction

Electron Diffraction Techniques in the SEM

1. ECCI – Electron channelling contrast images Dislocations in nitride thin films

Observation of crystal defects (dislocation, stacking faults and grain boundaries)

2. EBSD - Electron Backscatter Diffraction

Microstructural – crystallographic characterization technique for <u>bulk</u> <u>samples</u>

C. Trager-Cowan: http://ssd.phys.strath.ac.uk/index.php/Elec tron_channeling_contrast_imaging

Fe3% Si

3. TKD - Transmission Kikuchi Diffraction

Microstructural – crystallographic characterization technique for <u>thin</u> <u>samples</u>

EBSD Electron Backscatter Diffraction

5

Electron backscatter diffraction - history

- 1928 First observation of BKP by Nishikawa& Kikuchi
- 1973 Observation of BKP in a SEM by Venables and Harland
- 1984 <u>Dingley</u> started using TV camera and computer software for orientation determination
- 1992- Introduction of the Hough transform by Krieger Lassen et al.
- 1993 Introduction of OIM (Orientation image microscopy) by Adams et al.

Formation of Kikuchi pattern – step 1

The formation of EBSD patterns is a <u>two-step process</u>

POINT SOURCE

• Electrons strike the specimen

1. They are then inelastic scattered from the point source in all directions

<u>Inelastic:</u> some loss of energy

Formation of Kikuchi pattern – step 2

2. *crystalline materials: those* electrons (from inside the point source) are diffracted by the crystal lattice planes when <u>the Bragg condition is satisfied</u>

Bragg equation: $n\lambda = 2d \sin \theta$

λ: wavelength of the electrons
d : spacing of the crystal planes
n: is an interger
θ : angle of incidence

2 lattice plane

Simplified illustration – one electron and one lattice plane

 Since the <u>scattered electrons</u> are travelling in <u>all</u> <u>direction</u>, the diffracted beam will lie on one of <u>two cones</u>.

Thin sample

Oxford instrument

Detector screen

Adapted from: Ref.:http://ssd.phys.strath.ac.uk/index.php/Electron_backscatter_diffraction_(EBSD)

Two electron and two lattice plane

Adapted from: Ref.:http://ssd.phys.strath.ac.uk/index.php/Electron_backscatter_diffraction_(EBSD)

10

Simplified illustration – one electron and one lattice plane

Ref.:http://ssd.phys.strath.ac.uk/index.php/Electron_backscatter_diffraction_(EBSD)

EBSD – tilted sample

Bulk sample

EBSD detector

Tilt the sample to approximately 70° (best compromise between intensity and resolution)

EBSD – tilted sample

Scattering from single lattice planes

EBSD patterns

Position of bands <u>directly linked</u> to the crystallographic orientation

Diffraction from a specific lattice plane

Intersections of bands = intersections of planes = zone axes

Ti-Al 20kV *Ref.: Dr. Emmanuelle Boehm Courjault;* Introduction to EBSD (Electron BackScatter Diffraction) :Principle and Applications

Angles between bands = angles between planes

EBSD patterns are:

- <u>unique</u> for a specific crystal orientation
- is controlled by the crystal structure: space group symmetry, lattice parameters, *precise* composition

Surface sensitive technique

- Although EBSPs are created by <u>backscattered</u> <u>electrons</u>, the signal does not come from the whole BSE interaction volume
- Instead, the diffraction signal originates from a "POINT SOURCE" \rightarrow 5-10nm under the surface

Surface sensitive technique

- The top layer
 - Free from damage
 - Free from contamination
 - or oxidation layers
 - in case of non conductive samples

 → the <u>coat</u> must be kept very thin –
 typically in the range of <u>2-5 nm</u>.
- Due to high tilt angles (typically 70°),
 - <u>surface topography</u> must be kept to an absolute <u>minimum</u>.

Sample strongly tilted – Resolution y axis is 3x worst

Signal intensity

From: S. Baeck, TSL tutorial S. Wright Raw pattern Only a small fraction of the electron arriving at the phosphor screen are diffracted

Background intensity supresses both the contrast and sharpness.

Background

Nb-pattern from S. Zaefferer

Signal is material dependent

Increasing atomic number (↑ Z):

- Increase the amount of backscatter electrons <u>Pattern quality</u>
- Decreases the interaction volume improve spatial resolution

Short take home message

- It is not easy to prepare the sample for EBSD
- Once you get patterns, it runs fully automated

Automate data acquisition, pattern indexing and orientation determination

In one automate run you get:

- Grain size,
- texture,
- grain boundary distribution,
- phase distribution,
- ...

Choose the step size and the area

Runs very fast: Now a days up to **3000** patterns per seconds

Automated indexing during the acquisition

Orientation map

Grains size distribution

Grain boundary map

Misorientation angles

#Phase8	1:											
# Name	: Auster	nite, fo	c (New)									
# Spac	egroup:	F mmovl	le:									
# Ai 3	.66											
# 8: 3	1,66											
# C: 3	.66											
	a: 9E1											
# Beta	: 9E1											
# Gamm	a: 9E1											
	ations:											
#Index		×(Px)	y(Px)	×(µm)	y(µm)	phi1	PHI	phiz	Bands	8C	Grain	Inde
0	0	8	8	8	8	0	0	0	8	8	-1	
1	0	1	0	-2.7178		0	9	9	8	0	0	
2	0	2	0	-5.4348		9	9	9	0	.0	0	
3	0	3	0	-8.151		9	9	9	0	0	0	1.0
4	0	4	9	-1.0868		0	0	0	e	0	-1	
5	0	5	0	-1.3585		9	9	0	0	0	-1	
6	8	6	8	-1.6383				0	0	0	-1	
7	0	7		-1.981		0	0	8	8	8	-1	
8	9	8	8	-2,1736		ø	9	8	0	0	-1	
9	0	9	9	-2.4453		9	9	9	0	9	-1	
10	0	10	0	·2.717		8	0	9	0	0	-1	
11	0	11	9	-2.9687		0	9	0	9	0	-1	
12	0	12	0	-3.2604		8	8	0	0	9	-1	
	0	13		-3.5321			0			0	-1	
14	8	14	8	-3.8038		8	8	8	0	0	-1	
16	0	15	0	-4.3472		9	9	0	8	8	-1	
15	8	17	0	-4.6185		8	8	8	8	8	-1	
18	0	18	0	-4.8900		0	0	0	8	0	-1	
19	9	19	9	-5.162		8	0	8	0		-1	
29	8	20		-5.434		8		8	8	0	-1	
21		21		+5.785							-1	
22	8	22		-5.9774		0	0	0	0	6	-1	
23	0	23	8	-6.2491		0	0	8	8	8	-1	
24	0	24	8	-6.5288		e	0	8	e	0	-1	
25	0	25	e	-6.7925		e	e	e	é	ē	-1	
26	0	26	0	-7.8643		0	0	0	0	0	-1	
27	0	27	0	-7.3355		0	0	0	0	8	-1	
28	0	28	8	-7.6876		8	0		8	0	-1	
29	0	29		-7.8793	3 0	0	0		0	0	-1	
38	8	30	0	-8.151	0	0	0	0	0	8	-1	
31	9	31	0	-8.4227		9	9	9	0	0	-1	
32	0	32	0	-8.6944		0	9	0	0	0	-1	
33	0	33	0	-8.9661	1.0	ê	0	0	0	0	-1	
34	0	34	0	-9.2378		0	0	0	0	0	-1	
35	0	35		-9.5895		8		8		0	-1	
36	0	36		-9.7813				8		0	-1	
37	0	37	0	-1.0052		0	0	0	0	8	0	1.1
38	9	38	9	-1,0324		9	9	9	0	0	9	
39	9	39	9	-1.0596		9	9	9	0	9	0	
40	0	40	0	+1.0868		9	9	9	e	0	0	1.5
41	0	41	0	-1.1135		0	0	0	0	0	9	1.5
42	0	42	0	-1.1411		8	0	8	0	9	0	
43	0	43		-1.168		0		8	0	0	8	
44	8	44	0	-1.1954		0	0	0	0	8	0	
45	8	45	0	-1.2226		8	8	8	0	0	0	12

Colourful image

1111

Orientation with respect to the sample coordinate system

Z-direction

Y-direction

Χ

Adapted from: Channel 5 User Manual, HKL Technology A/S, Hobro, Denmark (2001).

EBSD is a materials characterization tool

Application example -1

DTU Nanolab

Niobium deformed by ECAP and heat treated for 15 min

Local misorientation map

Orientation bands – related to the type of deformation - **shear**

Deformed areas

Recrystallized areas

		Total	Partition
Min	Мах	Fraction	Fraction
0	3	0.999	0.999

H. Sandim; www.imim.pl

15 um