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Thin film deposition techniques

Evaporative deposition Sputter deposition
Chemical vapour deposition Atomic layer depositon
* How

* Properties of deposition processes
« Advantages
 Disadvantages

« Comparisons
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Evaporative deposition:
How

* Heat what you want to deposit until it has a high
vapour pressure in vacuum

* Put substrate in «vapour cloud»



Thermal evaporation:
How

» Heat target material (charge) with resistive
heating

" SRV ATA LY -

Hairpin Spiral

v

Basket

Al,O5 Coat

Coated boat
(or basket) Crucible with basket




Thermal evaporation:
How
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E-beam evaporation:

e Use electron beam
instead of current
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Thermal or e-beam?

« Reaction with crucible/boat/wire
* Can become brittle and break

» Melting temperature of target material
« 1600 °C
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Equilibrium vapor pressure (Torr)
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Figure 6.1: Equilibrium Vapor Pressures of Selected Materials. The Slashes Indicate the Melting Points (MPs)



Selective deposition of alloys
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Figure 6.2: Equilibrium Vapor Pressures of Lithium (Li) and Silver (Ag)




Properties of evaporative deposition

» Difficult to deposit alloys/mixtures
« Selective deposition

 Radiative heating
« Temperature sensitive samples
 Increase distance §

or Pressures of Lithium (Li) and Silver (Ag)

» Energy of atom corresponding to temperature, ~0.2 eV
 Films often not completely dense
* Tensile stress

* Line of sight deposition
 Allow shadow-masks with no backside deposition
« Easy to use shields to protect equipment

» Little impurities from walls
A

 Non-conformal on uneven substrates %
14
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Properties of evaporative deposition

« Low vacuum (<10~ Torr)
 Can allow high deposition rates
 Oxidation of target

* Large spread in thickness with angle
 Design of chamber

 Easy to measure thickness in-situ
 Quartz Crystal Microbalance
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Sputter deposition




Sputter deposition
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Sputter deposition: Higher energy
and reactivity

« Why does it matter?

« With higher energies, the effective temperature of the film
Increases

 Increase mobility of adatoms on the surface
« Increase density

« Can tune stress compressive/tensile

« Influence reaction rates and pathways

« Influence grain growth

///////////////
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Compound deposition
» The target is sputtered layer by layer

» The composition of the sputtered material always the same as
the bulk target
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Figure 7.4: Sputtering, Layer by Layer

* Lighter atoms (oxygen, nitrogen, carbon) often lost in transport

» Add gases to deposition chamber N N N {g
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Oxides, nitrides and carbides:
Reactive deposition

 Oxides, nitrides and carbides can be deposited reactively
» Oxygen, nitrogen or methane/acetylene introduced with argon

« Can shift the composition with changing amounts of reactive gas

* No O,: Cu

« Cu + Cu,0

o0 EEs ' OEEa
: 2360 + CUO i 78 ' ‘9‘ 9.3 9.5 9.7 10 ; 10.5 1" 12

 Can control the stoichiometry using optical emission
spectrometry

* Poisoning of target
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Reproducibility
« Many parameters in sputter deposition affect the film
» Deposition pressure
« Power of sputtering ions
« Partial pressure of reactive gas

 Density of plasma
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« «Racetrack» formation

- Prefential sputtering of crystallogra




Some comparisons: sputter and
evaporative deposition

» More deposition parameters are available for sputtering
* Allow non-equilibrium deposition
« More complicated parameter-space
 Denser films

 Sputtered films can have a higher energy impinging on the
substrate
» Energy can depend on voltage applied and pressure
» Can change density and character of films by improving adatom mobility

 Sputtered atoms contain more reactive species
 Radicals, ions

» Sputtering more complicated and expensive NNN%
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Comparison : Sputter and evaporative
deposition

 Evaporative deposition easier and more reproducible

» Sputter deposition not only line — of — sight.
» Deposits on all surfaces in chamber
« More difficult to keep clean
« Can have impurities from chamber walls

 Sputter deposition better for temperature sensitive materials
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Chemical vapour deposition (CVD)

* Relies on chemical bonding/chemical reactions rather than
bombardment of atoms

 Less damage at interfaces

« CVD
» Plasma or thermally assisted

» Atomic Layer Deposition (ALD)
« Plasma or thermally assisted
* ALD is a subset of CVD

« Impurities depend on the chemical reaction completeness NN N
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Chemical vapour deposition (CVD)

Reactants and Unused reactants, bi-products
carrier gas in 2> and carrier gas out->
CH,SICl, H, "
2
CHLSICL CH;SIiCl, CH,SiCl,
H, H;
CH;SiCl,
CH,SICl, H,
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Chemical vapour deposition (CVD)

Reactants and Unused reactants, bi-products
carrier gas in 2> and carrier gas out->
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Chemical vapour deposition (CVD)

» Non-line of sight process
« Conformality also on uneven substrates
* Up to ~1:50 ratio
 Can coat trenches

« Great flexibility in films deposited R SR
- Carbides, nitrides, polymers | um300KkYU 248E4 9153/98 SE_

» Deposition temperature can be reduced using plasma
* From ultra-high vacuum to atmospheric pressure

 Can tune deposition rate, microstructure, stoichiometry,
morphology, orientation
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Atomic layer deposition (ALD)

 The chemical reaction divided into two «half-reactions»

» Reactants separated in time

« Surface saturation
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Atomic layer deposition (ALD)

Step 2b
purge
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Atomic layer deposition (ALD)

» Can deposit on very high aspect-ratio substrates
« Conformal and dense films

 Deposition temperature can be reduced using plasma
« Some chemistries require plasma to occur
 Can reduce conformality

* No pinholes
* Excellent thickness control (nm control)

 Often expensive and time-consuming
 Batch process (not spatial ALD)
* Precursors can be expensive
» Low deposition rates
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Properties

PEALD
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PECVD

Sputtering

Evaporation
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Growth rate

Uniformity

Step coverage

Impurity levels

Adhesion

Film density

Lower
< 400 °C common
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common, can go to
AP

Very low

1 A/sis a fast
process, sALD can
go higher

Excellent

Excellent

Moderate
Precursor
contamination due
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Very good

Excellent
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Higher than
comparable
thermal ALD
processes

Very good
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due to reactive
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plasma effects and
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Higher
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surfaces
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obtained at high
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CVD processes
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TACVD processes

Good, but can be
worse on larger
surfaces
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due to reactive
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than CVD due to
plasma effects and
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Very good

Good
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0.1-5Pa
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Very good

Poor on small
features, big
features possible
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vacuum

Good

Good
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Very poor, true
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Poor
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Vapor Particle or
flux inclusion
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Figure 6.10: Geometrical Shadowing of the Deposition Flux by a Particle on the Surface

and by Surface Features




Energetic
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Thank you!

Evaporative deposition
Easy

Little energy during film
formation
(temperature and condensation)

Films tensile stress and less
dense

Sputter deposition

Complex

More energy deposited during
film formation (higher speed,
plasma presence)

Can deposit wide range of
properties in films
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Other

* There is a threshold energy below which nothing will sputter (25
eV)
» No sputtering by electrons

 Sputtering yields decrease at high energies due to energy lost
far beneath surface
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